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1. Lemmas

The following lemmas provide distribution theory for the estimators of the transformation
matrix W and the matrix of joint eigenvectors U .

Lemma S.1. ‖Â−A‖ = oP (1) and
√
N vec(Â−A) L→ N (0,E[υnυ′n]).

Proof. Because Â is a sample average over χ(xnm1)χ(xnm2)′ and A = E[χ(xm1)χ(xm2)′]
exists, consistency follows by the law of large numbers. Further, var[χi1(xm1)χi2(xm2)]
exists for any i1, i2 by Assumption 2 because

E[χi1(xm1)2χi2(xm2)2] =
K∑
k=1

Ek[χi1(xm1)2] Ek[χi2(xm2)2]ωk = O(1),

where we have used the conditional independence of the measurements within groups. We
have also used the fact that fk ≤ ω−1

k f , so Ek[χi(xm)2] ≤ ω−1
k E[χi(xm)2], which is finite.

As the data constitute a random sample, the asymptotic-normality claim follows from the
Lindeberg-Lévy version of the central limit theorem. 2

Lemma S.2. ‖Ŵ −W‖ = oP (1) and
√
N vec(Ŵ −W ) L→ N (0, JW E[υnυ′n]J ′W )

Proof. Matrix A is real and symmetric, has rank K, and has K distinct non-zero
eigenvalues λ ≡ (λ1, λ2, . . . , λK)′ by Assumption 3. By combining Lemma S.1, Theorem
4.2 in Eaton and Tyler (1991), and Theorem 1 in Magnus (1985), it then follows that the
estimator λ̂ constructed from an eigen decomposition of Â has the asymptotically-linear
representation

√
N(λ̂− λ) = (VK

col
⊗ VK)′

√
N vec(Â−A) + oP (1). (S.1.1)

Let Γ ≡ Λ−1/2
K and let Γ̂ denote its estimator. ΛK and λ are linked as vec ΛK = (IK

col
⊗ IK)λ

and the transformation from ΛK to Γ is continuous. Therefore, together with an application
of the delta method, (S.1.1) implies that

√
N vec(Γ̂− Γ) = −1

2(IK
col
⊗ IK) Γ3 (VK

col
⊗ VK)′

√
N vec(Â−A) + oP (1).

This expression can be simplified by distributing the term Γ3 over the columnwise Kronecker
products and substituting W = ΓV ′K to arrive at

√
N vec(Γ̂− Γ) = −1

2(Γ
col
⊗ IK) (W

row
⊗ W )

√
N vec(Â−A) + oP (1). (S.1.2)

Further, it is known (see, e.g., Anderson 1963) that the estimated eigenvectors, V̂K , satisfy
√
N vec(V̂K − VK) = −(IK ⊗V ) (ΛK 	 Λ)+ (VK ⊗ V )′√N vec(Â−A) + oP (1). (S.1.3)

Let K be the IK × IK commutation matrix (Magnus and Neudecker 1979); recall that
vec(V̂ ′K − V ′K) = K vec(V̂K − VK). A linearization of Ŵ −W gives
√
N vec(Ŵ −W ) =

(
II ⊗Γ

)
K
√
N vec(V̂K − VK) +

(
VK ⊗ IK

)√
N vec(Γ̂− Γ) + oP (1).
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Elementary properties of the commutation matrix, and (S.1.2) and (S.1.3), then imply that
√
N vec(Ŵ −W ) = JW

√
N vec(Â−A) + oP (1).

The asymptotic-normality statement in Lemma S.1 then yields asymptotic normality. This
concludes the proof. 2

Lemma S.3. ‖Û − U‖ = oP (1) and
√
N vec(Û − U) L→ N (0, JU E[ψnψ′n]J ′U ).

Proof. It suffices to show that the input matrices for the objective function in (3.4)
are
√
N -consistent and jointly asymptotically normal, and to verify their influence-function

representation. The desired result will then follow from an application of Theorem 5 in
Bonhomme and Robin (2009). Note that Lemma S.2 already provides the asymptotic
distribution of

√
N vec(Ŵ −W ), and that

√
N vec(Ŵ ′ −W ′) = K

√
N vec(Ŵ −W ) L→ N (0, JW ′ E[υnυ′n]J ′W ′).

Also, following the same steps as in the proof to Lemma S.1, the asymptotic normality of

vec
(

horzcat[Âi]− horzcat[Ai]
)

= ΥN

is immediate. It follows that the estimators Ŵ ÂiŴ
′ are jointly asymptotically-normal

estimators of the WAiW
′. By a linearization, their joint influence-function representation is

found to be

vec
(

horzcat[Ŵ ÂiŴ
′]− horzcat[WAiW

′]
)

= ψN + oP (N−1/2),

where

ψn = vertcat[WAi ⊗ IK ] JW υn︸ ︷︷ ︸
contribution of W

+ II ⊗(W ⊗W ) Υn︸ ︷︷ ︸
contribution of the Ai

+ vertcat[IK ⊗WAi] JW ′ υn︸ ︷︷ ︸
contribution of W ′

,

which indeed agrees with the definition of ψn given in the main text. Now, because the
sample average ψN satisfies the conditions for the Lindeberg-Lévy version of the central
limit theorem, the proof is complete. 2

2. Proofs

Proof of Theorem 2. Recall that θ̂ − θ0 = (θ̂ − θ̃) + (θ̃ − θ0) where the first term captures
the estimation noise in the weight function, that is,

θ̂ − θ̃ = 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

{
τ̂k(xnm1 , xnm2)− τk(xnm1 , xnm2)

}
ϕ(xnm3),

and the second term is the sampling-error representation of θ̃, being

θ̃ − θ0 = 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τk(xnm1 , xnm2)ϕ(xnm3)− E[τk(xm1 , xm2)ϕ(xm3)].
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The asymptotic distribution of
√
N(θ̃ − θ0) is easy to characterize. Therefore, to obtain the

asymptotic distribution of
√
N(θ̂ − θ0), the main task is to derive the impact of estimating

the weight function τk.
Let ηk ≡W ′uk and let η̂k be its plug-in estimator. Note that, using (2.5),

τ̂k(xnm1 , xnm2)− τk(xnm1 , xnm2) = η̂′kXnm1,nm2 η̂k − η′kXnm1,nm2ηk,

where Xnm1,nm2 ≡ χ(xnm1)χ(xnm2)′. By consequence of Lemmas S.2 and S.3, we have that

τ̂k(xnm1 , xnm2)− τk(xnm1 , xnm2) = η′k(Xnm1,nm2 +X ′nm1,nm2
)(η̂k − ηk) + oP (N−1/2).

Also, by iterating expectations,

E[ϕ(xm3) η′k(Xm1,m2 +X ′m1,m2
)] = E

[
ϕ(xm3) ∂η

′
k A(xm3) ηk
∂η′k

]
= ϑ0.

Hence, by a standard law of large numbers,
√
N(θ̂ − θ̃) = ϑ0

√
N(η̂k − ηk) + oP (1).

Further, again by Lemmas S.2 and S.3, we have

√
N(η̂k − ηk) = 1√

N

N∑
n=1

(e′k ⊗ II) ιn + oP (1).

Combining the results yields the influence-function representation in the main text and
concludes the proof. 2

Proof of Proposition 1. Given Theorem 2 and the regularity conditions in Assumption 4,
the result is standard; see, e.g., Hansen (1982). 2

Proof of Proposition 2. The estimation noise in the weights can be ignored throughout the
proof. Indeed, with

f̃k(x) ≡ 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τk(xnm1 , xnm2)
h

κ

(
xnm3 − x

h

)
,

Lemmas S.2 and S.3 imply that ‖f̂k− f̃k‖∞ = OP (N−1/2), which is asymptotically negligible.
Therefore, it suffices to show that the infeasible estimator f̃k satisfies the conclusions of
Proposition 2.

We first show consistency, and start by characterizing the bias and variance of f̃k(x).
First note that, by Theorem 1,

E[f̃k(x)] = E
[
τk(xm1 , xm2)

h
κ

(
xm3 − x

h

)]
= Ek

[
1
h
κ

(
xm3 − x

h

)]
.
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Standard arguments and Assumption 5 then give

Ek
[

1
h
κ

(
xm3 − x

h

)]
=
∫ +∞

−∞

fk(z)
h

κ

(
z − x
h

)
dz = fk(x) + h2 µf + o(h2).

where, recall, µf = 1
2 f
′′
k (x)

∫ +∞
−∞ u2κ(u) du. Furthermore, because the observations are

independent and identically distributed,

var[f̃k(x)] = var[βn]
Nh

, βn ≡
(M − 3)!
M !

∑
(m1,m2,m3)

τk(xnm1 , xnm2)√
h

κ

(
xnm3 − x

h

)
.

To analyze the numerator, note that, by Assumptions 5 and 6,

E[βn] = Ek
[

1√
h
κ

(
xm − x
h

)]
=
√
h

∫ +∞

−∞
fk(x+ hu)κ(u) du = O(

√
h).

Also, by essentially the same argument, for any pair of triples (m1,m2,m3) and (m′1,m′2,m′3)
with m3 6= m′3,

E
[
τk(xm1 , xm2)√

h

τk(xm′
1
, xm′

2
)

√
h

κ

(
xm3 − x

h

)
κ

(
xm′

3
− x
h

)]
= O(h).

Hence,

var[βn] = M

(
(M − 3)!
M !

)2
E

[
qk(xm) 1

h
κ

(
xm − x
h

)2
]

+O(h)→ Vf ,

where the last step follows from a bounded-convergence argument. The mean-squared error
of f̃k(x) is thus

mse[f̃k(x)] = O
(
h4)+O

(
1
Nh

)
,

and |f̃k(x)− fk(x)| = oP (1) follows.
To show asymptotic normality we verify the conditions for Lyapunov’s central limit

theorem for triangular arrays. Observe that

√
Nh

(
f̃k(x)− E[f̃k(x)]

)
= 1√

N

N∑
n=1

(βn − E[βn]).

We need to show that (i) E[βn] = O(1); (ii) var[βn] → Vf ; and (iii) that the Lyapunov
condition

N∑
n=1

E
∣∣∣∣βn − E[βn]√

N

∣∣∣∣2+δ
= o(1)

holds for some δ > 0. Conditions (i) and (ii) have already been shown to hold above. Also,
because χ4

i f is integrable and the kernel function is bounded,

N∑
n=1

E
∣∣∣∣βn − E[βn]√

N

∣∣∣∣4 = O

(
1
Nh

)
= o(1),
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from which Condition (iii) follows. Therefore, with Nh5 → c as N diverges,
√
Nh [f̂k(x)− fk(x)] L→ N (

√
c µf ,Vf ).

The proof is complete. 2

3. A reweighting interpretation

The function dk(x) is a tilt function. Indeed,

fk(x) = dk(x) f(x).

For estimation purposes, the formulation in Theorem 1 is more interesting as it prevents the
need for nonparametric estimation of the tilt. An alternative view on τk is to see it as a
weight. More precisely, it is readily verified that

E[τk(xm1 , xm2)] = 1, Ek1 [τk2(xm1 , xm2)] = 1{k1 = k2}
ωk2

.

By means of conditional independence of the measurements, this implies that

E[τk1(xm1 , xm2)ϕ(xm3)] =
K∑

k2=1
1{k1 = k2}

ωk2

ωk1

Ek2 [ϕ(xm3)] = Ek1 [ϕ(xm3)].

So, inclusion of the weight ensures correct classification of observations to latent groups, on
average.

4. Estimation of the mixing proportions

Corollary 2 suggests estimating the mixing proportions ω by

ω̂ ≡ (B̂′B̂)−1B̂′â, (S.4.1)

where â ≡ (NM)−1∑N
n=1

∑M
m=1 χ(xnm), and

B̂ ≡ (̂b1, ..., b̂K), b̂k ≡
1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2)χ(xnm3).

Given the results in the main text, the asymptotic properties of ω̂ are easy to derive. First,
Theorem 1 implies that

B = E




χ1(xm3)
χ2(xm3)

...
χI(xm3)




τ1(xm1 , xm2)
τ2(xm1 , xm2)

...
τK(xm1 , xm2)


′ = E[χ(xm3)T (xm1 , xm2)],
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say. An application of Theorem 2 with ϕ(xm) = χ(xm) further shows that the plug-in
estimator B̂ of B is consistent and asymptotically linear. Moreover, the influence function
of vec[B̂ −B] equals

Θ0 (IK ⊗ II) ιn + (M − 3)!
M !

∑
(m1,m2,m3)

vec[χ(xnm3)T (xnm1 , xnm2)−B],

where Θ0 ≡ vertcat[2E[χ(xm)u′kWA(xm)]]. In addition, by Assumption 2, we have that√
N(â− a), too, is asymptotically normal.
Now, because B̂ is consistent for B and BB′ is full rank, a linearization gives

√
N(ω̂ − ω) = (B′B)−1

√
N(B̂ −B)′a+ (B′B)−1B′

√
N(â− a) + oP (1).

The asymptotic distribution of ω̂ then follows readily from an application of the delta
method.

5. Tests of rank and selection of I

Our approach requires choosing I so that the I × I matrix

A = AI =


a11 a12 · · · a1I
a21 a22 · · · a2I
...

...
. . .

...
aI1 aI2 · · · aII

 , ai1i2 = E[χi1(xm1)χi2(xm2)],

has rank K. For any fixed I, the plug-in estimator Â is
√
N -consistent and asymptotically

normal by Lemma S.1, i.e.,
√
N vec(Â−A) L→ N

(
0,E[υnυ′n]

)
.

This result can be used to construct a test of the rank of A, and thus to test our identifying
condition in Assumption 1.

To test the rank of A we suggest using the procedure of Kleibergen and Paap (2006).
Although one could use any of a number of alternative available rank tests, their statistic has
several attractive features and, therefore, carries our preference. Prime advantages include
its non-sensitivity to the ordering of variables, and the fact that its limit distribution under
the null is free of nuisance parameters.

To present the test statistic, adapted to the current setting, order the eigenvalues of A in
decreasing order, and place the eigenvectors in V accordingly. Fix k ∈ {1, 2, . . . , I} and let
ΛI−k ≡ Λ(k + 1 : I, k + 1 : I) denote the lower-right (I − k)× (I − k) block of Λ. Also, let

Vk ≡ V (1 : k, k + 1 : I), VI−k ≡ V (k + 1 : I, k + 1 : I),

using obvious notation for matrix block selection. Now, let

πk ≡ (V I−k ⊗ V I−k) vecA, V I−k ≡ (VI−kV ′I−k)1/2V −1′
I−k[V ′k, V ′I−k].
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Under the null H0 : rank A = k,

r̂k ≡ N π̂′kV̂
−1
π π̂k

L→ χ2((I − k)2), Vπ ≡ (V I−k ⊗ V I−k)E[υnυ′n](V ′I−k ⊗ V
′
I−k), (S.5.1)

where π̂k is the sample analog of πk, V̂π is a consistent estimator of Vπ, and χ2((I − k)2)
denotes the chi-squared distribution with (I − k)2 degrees of freedom.

The rank statistic in (S.5.1) can be used to test Assumption 1. It further suggests the
following algorithm for selecting I in practice.

(i) Initialize the algorithm by setting I1 = K and move to Step 1.

(ii) Step s of the algorithm is

(iia) Test H0 : rank AIs = K − 1 using (S.5.1) at chosen significance level α.

(iib) If H0 is not rejected, set Is+1 = Is + 1 and continue to Step s+ 1.

(iic) If H0 is rejected, set I = Is and stop.
Let Î be the resulting estimator, and let I0 be the minimum I such that rank AI = K.
Assume that a known upper bound I on I0 is available. Then Î will be weakly consistent
for I0, provided that the significance level α decreases at a suitable rate as a function of the
sample size, as in Robin and Smith (2000).

6. Least-squares cross-validation

Recall the nonparametric density estimator

f̂k(x) = 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2) 1
h
κ

(
xnm3 − x

h

)
.

A popular method to select h in an automated manner is by least-squares cross-validation
(Rudemo 1982). Least-squares cross-validation chooses h as to minimize a sample version of
the integrated squared error ∫ (

f̂k(x)− fk(x)
)2 dx.

The optimality properties of this selection scheme for standard kernel density estimation
are well known (Hall 1983; Stone 1984). Expanding the square under the integral sign and
ignoring terms that do not depend on h, the cross-validated bandwidth is the minimizer of

CV(h) ≡
∫
f̂k(x)2 dx− 2

∫
f̂k(x) fk(x) dx. (S.6.1)

To see how least-squares cross-validation can be implemented in our mixture setting we
consider each of the right-hand side terms in (S.6.1) separately.

The first term in (S.6.1) is standard. Working out the square,
∫
f̂k(x)2 dx equals

1
N2

(
(M − 3)!
M !

)2 N∑
n=1

N∑
n′=1

∑
(m1,m2,m3)

∑
(m′

1,m
′
2,m

′
3)

γ(xnm1 , xnm2 , xnm3 ;xn′m′
1
, xn′m′

2
, xn′m′

3
),
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where γ(xnm1 , xnm2 , xnm3 ;xn′m′
1
, xn′m′

2
, xn′m′

3
) is defined as

τ̂k(xnm1 , xnm2) τ̂k(xn′m′
1
, xn′m′

2
) 1
h
κ

(
xn′m′

3
− xnm3

h

)
with κ(x) ≡

∫
κ(u)κ(x− u) du. The convolution of the kernel takes a particularly tractable

form when κ is taken to be the standard-normal density. Indeed, in this case, κ is just a
normal density with mean zero and variance equal to two.

The second term in (S.6.1) appears more complicated because it depends on fk, which is
unknown. However, we can use Theorem 1 to obtain∫

f̂k(x) fk(x) dx = E
[
τk(xm1 , xm2)f̂k(xm3)

]
,

where the expectation is taken with respect to the joint density of (xm1 , xm2 , xm3). Moreover,
a plug-in estimator of this expectation is

1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2) f̂−nk (xnm3),

where f̂−nk denotes the standard leave-one-out kernel density estimator, that is,

f̂−n1
k (x) ≡ 1

N − 1
(M − 3)!
M !

∑
n 6=n1

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2) 1
h
κ

(
xnm3 − x

h

)
.

We leave the formal study of the large-sample properties of this cross-validation criterion
along the lines of Hall and Marron (1987) to future work.

7. Comparison to oracle density estimator

Let gn be a random variable denoting group membership of observation n. Note that
Pr[gn = k] = ωk. In our Monte Carlo experiment we now compare our density estimator f̂k
to the oracle estimator

f̂?k (x) ≡
1

NM

∑N
n=1

∑M
m=1

1
h κ
(
xnm−x

h

)
1{gn = k}

1
N

∑N
n=1 1{gn = k}

,

that is, a standard kernel density estimator applied to the subsample of observations drawn
from the k-th subpopulation. Figure S.1 contains the average point estimates (full lines),
.025 and .975 quantiles of the empirical distributions of the point estimates (dashed lines),
and true values (dotted lines) of our estimator f̂k (left plot) and the oracle estimator f̂?k just
defined (right plot). For both estimators, the bandwidth was chosen via least-squares cross-
validation. The plots show that both estimators yield broadly the same density estimate, on
average. Thus, our reweighting approach does not suffer from more bias than does the oracle
estimator. Not surprisingly, our feasible estimator is somewhat more variable, however.
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Figure S.1. Comparison to oracle density estimator. Design from Levine, Hunter, and Chauveau (2011).
N = 500,M = 3. Statistics obtained over 1, 000 replications.
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8. Additional simulation results

We present additional evidence on the performance of our estimators in a two-component
mixture of Beta distributions on [−1, 1]. The density function of the Beta distribution on
this interval is

b(x;ϑ1, ϑ2) ≡ 1
2ϑ1+ϑ2−1

1
B(ϑ1, ϑ2) (1 + x)ϑ1−1(1− x)ϑ2−1,

where B(ϑ1, ϑ2) ≡
∫ 1

0 x
ϑ1−1(1− x)ϑ2−1 dx, and ϑ1 and ϑ2 are positive scale parameters. Its

mean and variance are

µ(ϑ1, ϑ2) ≡ −1 + 2 ϑ1

ϑ1 + ϑ2
, and σ2(ϑ1, ϑ2) ≡ 4 ϑ1ϑ2

(ϑ1 + ϑ2)2(ϑ1 + ϑ2 + 1) , (S.8.1)

respectively. We experimented with various parameter values. Here we present results for a
design where component densities f1(x) = b(x; 2, 5) and f2(x) = b(x; 5, 4) are mixed with
ω1 = .50 and ω2 = .50. We use normalized Chebychev polynomials of the first kind for
χ1, χ2, . . . , χI and consider several choices for I. The sample size is fixed at N = 500 and
M = 3. Implementation of our estimators is as discussed in the main text. All statistics are
computed over 1, 000 Monte Carlo replications. All results are collected in Figure S.2 and
Table S.1 contain the results.

The upper and middle panels in Figure S.2 provide the empirical densities of the Studen-
tized point estimates (full lines) of the component means (middle panels) and component
standard deviations (lower panels), along with a standard-normal density (dashed lines) as a
benchmark. These plots show that our asymptotic approximation does well in capturing the
small-sample behavior of our estimators. The deviation from normality is somewhat larger
for the estimates of the standard deviation than for the estimates of the mean. This is not
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Figure S.2. Simulation results for a two-component mixture of Beta distributions on [−1, 1]. N =
500,M = 3. Statistics obtained over 1, 000 replications.
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Upper panels: empirical density functions (full) of Studentized estimates of component means and
standard deviations obtained over 1, 000 replications, together with a standard normal density
(dashed). Lower panels: average point estimate (full) and .95% confidence band (dashed) for
component distributions and densities, together with the functions respective true values (dotted).
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Table S.1. Simulation results for a two-component mixture of Beta distributions on [−1, 1]. N =
500,M = 3. Statistics obtained over 1, 000 replications.

component functionals
θ0 I BIAS SD SE/SD CR(95%)
µ 5 .000 .000 .022 .025 .987 .996 .943 .948
σ 5 −.001 −.004 .016 .029 1.138 .794 .979 .891
µ 10 −.001 −.002 .021 .022 1.029 1.031 .951 .961
σ 10 −.002 −.001 .015 .024 1.184 .856 .980 .919

component distributions at x
x I BIAS SD SE/SD CR(95%)
−.50 5 .000 .000 .027 .019 1.024 1.014 .958 .949

0 5 .000 .000 .023 .027 1.001 .980 .948 .942
.50 5 .000 .000 .007 .014 .989 1.001 .939 .946
−.50 10 .001 .001 .031 .022 1.019 1.018 .952 .960

0 10 .000 .002 .022 .029 1.020 .985 .953 .945
.50 10 −.001 .000 .005 .015 1.111 1.009 .970 .953

surprising given that σ is a nonlinear functional and that its estimator relies on second-order
moments. Table S.1 further gives the ratio of the (mean of the) estimated standard errors to
the empirical standard deviation, as well as coverage rates of 95%-confidence intervals. The
ratios are fairly close to one, providing further evidence of the usefulness of our asymptotic
theory. As a consequence, the coverage of the confidence intervals is close to 95%. The
coverage rates are somewhat more accurate for the mean compared to the standard deviation,
which is in line with the above discussion.

The lower left plot in Figure S.2 shows the average point estimate (solid lines) and average
95% confidence band (dashed lines) for the component distributions. The true distributions
are also plotted (dotted line) but they are difficult to see as they essentially coincide with
the mean of the point estimates. That is, our estimator is virtually unbiased. Furthermore,
the .025 and .975 quantiles of the point estimates, too, would be almost indistinguishable
from the reported average confidence band, and so they are not reported on the figure. This
shows that our method yields accurate inference on the component cumulative distribution
functions. The bottom panel in Table S.1 confirms this. It shows inference results for the
component distributions at x ∈ {−.50, 0, .50}. The estimates show small biases, and the
confidence intervals have very accurate coverage. The lower right plot in Figure S.2 provides
the corresponding results for the density estimator.

9. Additional results for the empirical application

Figure S.3 contains histograms of each of the individual measurements of the water-level
dataset.
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Figure S.3. Histograms of the individual measurements in the water-level data of Thomas, Lohaus, and
Brainerd (1993).
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